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• Personal Assistants on phones or other devices

o SIRI, Alexa, Cortana, Google Assistant

• Playing music, setting timers and clocks

• Chatting for fun

• Booking travel reservations

• Clinical uses for mental health

Conversational Agents  
(AKA  Dialogue Systems AKA Dialogue Agents AKA Chatbots)

3
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1. Chatbots

o mimic informal human chatting

o for fun, or even for therapy

2. (Task-based) Dialogue Agents

o interfaces to personal assistants

o cars, robots, appliances

o booking flights or restaurants

Two kind of conversational agents
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• Rule-based

1. Pattern-action rules (ELIZA)

2. + A mental model (PARRY):

The first system to pass the Turing Test! 

• Corpus-based

o Information Retrieval (XiaoIce)

o Neural encoder-decoder (BlenderBot)

Chatbot Architectures
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BlenderBot 
(Roller et al. 
2020)
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XiaoIce (Zhou et al., 2020)
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• "Task-based" or "goal-based" dialogue agents

o Systems that have the goal of helping a user solve a task

o Setting a timer

o Making a travel reservation

o Playing a song

o Buying a product

• Architecture: 

o Frames with slots and values

o A knowledge structure representing user intentions

Task-based dialogue agents
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• A set of slots, to be filled with information of a given type

• Each associated with a question to the user

Slot  Type Question

ORIGIN city  "What city are you leaving from?

DEST   city  "Where are you going?

DEP DATE date "What day would you like to leave?

DEP TIME time "What time would you like to leave?

AIRLINE line  "What is your preferred airline?

The Frame
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Week 10. 2 - Properties of Human 
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A telephone 

conversation 

between a 

human travel 

agent (A) and a 

human client (C)
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• Turns

• We call each contribution a "turn"

• As if conversation was the kind of game where everyone takes 

turns.

Properties of Human Conversation
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• Turn-taking issues

oWhen to take the floor?

oWhen to yield the floor?

• Interruptions

Properties of Human Conversation
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• Barge-in

oAllowing the user to interrupt

• End-pointing

oThe task for a speech system of deciding whether the user has stopped 

talking.

oVery hard, since people often pause in the middle of turns

Implications for Conversational Agents

16



Deakin University CRICOS Provider Code: 00113B

Language as Action

17

Each turn in a dialogue is a kind of 

action

Wittgenstein (1953) and Austin (1962)
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Speech Acts (aka Dialogue Acts)

18

Constatives: committing the speaker to something’s being the case 
(answering, claiming, confirming, denying, disagreeing, stating) 

Directives: attempts by the speaker to get the addressee to do 
something (advising, asking, forbidding, inviting, ordering, requesting) 

Commissives: committing the speaker to some future course of action 
(promising, planning, vowing, betting, opposing) 

Acknowledgments: express the speaker’s attitude regarding the hearer 
with respect to some social action (apologizing, greeting, thanking, 
accepting an acknowledgment) 

Bach and Harnish (1979)
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• "Turn up the music!" 

o Directive

• "What day in May do you want to travel?"

o Directive

• "I need to travel in May"

o Constative

• Thanks

o Acknowledgement

Speech acts

19
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• Participants in conversation or any joint activity need to establish common 

ground.

• Principle of closure.  Agents performing an action require evidence, sufficient 

for current purposes, that they have succeeded in performing it  (Clark 1996, 

after Norman 1988)

• Speech is an action too!  So speakers need to ground each other’s utterances. 

• Grounding: acknowledging that the hearer has understood

Grounding

20
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• Grounding is relevant for human-machine interaction

• Why do elevator buttons light up?

Grounding

21
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• A: And you said returning on May 15th?

C: Uh, yeah, at the end of the day.

A: OK

• C: OK I’ll take the 5ish flight on the night before on the 11th.

A: On the 11th? OK

• C: ...I need to travel in May.

A: And, what day in May did you want to travel?

Grounding: Establishing Common Ground

22
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• System: Did you want to review some more of your profile?

• User: No.

• System: What’s next?

• System: Did you want to review some more of your profile?

• User: No.

• System: Okay, what’s next?

Grounding is important for computers too!

23

Awkward!

Less Awkward!
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• Local structure between adjacent speech acts, from the field of 

conversational analysis (Sacks et al. 1974)

• Called adjacency pairs:

o QUESTION… ANSWER

o PROPOSAL… ACCEPTANCE/REJECTION

o COMPLIMENTS ("Nice jacket!")… DOWNPLAYER ("Oh, this old thing?")

Conversations have structure

24



Deakin University CRICOS Provider Code: 00113B

• Correction subdialogue

• Agent:  OK.  There's #two non-stops#

o Client:                     #Act- actually#, what day of the week is the 15th?

o Agent: It’s a Friday.

o Client: Uh hmm. I would consider staying there an extra day til Sunday. 

• Agent: OK...OK. On Sunday I have ... 

Another kind of structure: Subdialogues

25



Deakin University CRICOS Provider Code: 00113B

• User: What do you have going to UNKNOWN WORD on the 5th?

o System:  Let’s see, going where on the 5th?

o User: Going to Hong Kong. 

• System: OK, here are some flights... 

Clarification Subdialogues

26
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• User: Can you make train reservations?

• System: Yes I can.

• User: Great, I’d like to reserve a seat on the 4pm train to New York. 

Presequences

27
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• Some conversations are controlled by one person

o A reporter interviewing a chef asks questions, and the chef responds.

o This reporter has the conversational initiative (Walker and Whittaker 1990)

• Most human conversations have mixed initiative: 

o I lead, then you lead, then I lead.

• Mixed initiative is very hard for NLP systems, which often default to simpler styles that can be 

frustrating for humans:

o User initiative (user asks or commands, system responds)

o System initiative (system asks user questions to fill out a form, user can't change the direction)

Conversational Initiative

28
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Agent: And, what day in May did you want to travel?

Client: OK, uh, I need to be there for a meeting that’s from the 12th to the 

15th. 

Even harder problems:  Inference

29
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Week 10. 3 - Rule-based Chatbots: 
ELIZA and PARRY

SIT330-770: Natural 
Language Processing
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•Men are all alike.
IN WHAT WAY
They're always bugging us about something or other. 
•CAN YOU THINK OF A SPECIFIC EXAMPLE 
•Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE 
•He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED 
•...

•You are like my father in some ways.
•WHAT RESEMBLANCE DO YOU SEE
•You are not very aggressive but I think you don’t want me to notice that.
•WHAT MAKES YOU THINK I AM NOT AGGRESSIVE
•You don’t argue with me.
•WHY DO YOU THINK I DON’T ARGUE WITH YOU
•You are afraid of me.
•DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU
•My father is afraid of everybody.
•WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER
•Bullies.
•DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND MADE YOU COME HERE

ELIZA: Weizenbaum (1966)

31

Weizenbaum, Joseph. 1966, "ELIZA - A Computer Program For 

the Study of Natural Language Communication Between Man And 
Machine", Communications of the ACM 9 (1): 36-45
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• Draw the patient out by reflecting patient’s statements back at them

• Rare type of conversation in which one can “assume the pose of knowing 

almost nothing of the real world”

ELIZA's trick: be a Rogerian psychologist

32
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Patient: "I went for a long boat ride”

Psychologist: "Tell me about boats”

• You don’t assume she didn’t know what a boat is

• You assume she had some conversational goal

• Chatbots trying to pass the Turing test usually choose some such 

domain

Rogerian psychologist

33
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(0 YOU 0 ME)          [pattern]

→ 

(WHAT MAKES YOU THINK I 3 YOU) [transform]

0  means Kleene *

The 3 is the constituent # in pattern

You hate me

WHAT MAKES YOU THINK I HATE YOU

Eliza pattern/transform rules

34
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• Rules are organized by keywords

• Each keyword has a pattern and a list of possible transform

Eliza Rules

35

keyword pattern list of transforms

Keyword:  YOU

Pattern: (0 YOU 0 ME)     

Transforms: (WHAT MAKES YOU THINK I 3 YOU)
  (WHY DO YOU THINK I 3 YOU)
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User: I know everybody laughed at me

“I” is very general:
I: (I *) -> (YOU SAY YOU 2)

ELIZA: YOU SAY YOU KNOW EVERYBODY LAUGHED AT YOU

“Everybody” is more specific and interesting
Everybody: (Everybody *) -> (WHO IN PARTICULAR ARE YOU THINKING OF)

ELIZA: WHO IN PARTICULAR ARE YOU THINKING OF?

 Implementation: keywords stored with their rank 
Everybody 5 (list of transformation rules)

I   0 (list of transformation rules)

Keywords are ranked from specific to general

36
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• PLEASE GO ON

• THAT’S VERY INTERESTING

• I SEE

NONE

38
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•(MEMORY MY

 (0 MY 0 = LETS DISCUSS FURTHER WHY YOUR 3)

• (0 MY 0 = EARLIER YOU SAID YOUR 3)

• (0 MY 0 = DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR 3))

• Whenever “MY” is highest keyword

o Randomly select a transform on the MEMORY list 

o Apply to sentence

o Store on a (first-in-first-out) queue

• Later, if no keyword matches a sentence

o Return the top of the MEMORY queue instead

Memory

39
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• People  became deeply emotionally involved with the program

• One of Weizenbaum's staff asked him to leave the room when she talked with 

ELIZA

• When he suggested that he might want to store all the ELIZA conversations for 

later analysis, people immediately pointed out the privacy implications

oSuggesting that they were having quite private conversations with ELIZA

o Despite knowing that it was just software.

Ethical implications: Anthropomorphism and Privacy

40
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• It worried Weizenbaum that people confided in ELIZA

• Were people misled about how much computers understood?

• Turkle studied users of ELIZA and other systems

• Turkle has shown human face-to-face interaction is vital

• But people also develop specific relationships with artifacts

• Some users told her ELIZA was more like a kind of diary, a way to privately explore 

their thoughts.

• Importance of value-sensitive design

Ethical implications

41

Joseph Weizenbaum.  1976.  Computer Power and Human Reason: From Judgment to Calculation.  WH Freeman.
Sherry Turkle. 2011. Taking Things at Interface Value, chapter in Life on the Screen. Simon and Schuster.
Sherry Turkle. 2007. Authenticity in the age of digital companions. Interaction Studies, 8(3), pp.501-517
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• Another chatbot with a clinical psychology focus

o Colby, K. M., Weber, S., and Hilf, F. D. (1971). Artificial paranoia. Artificial Intelligence 2(1), 1–25. 

• Used to study schizophrenia

• Same pattern-response structure as Eliza

• But a much richer:

o control structure 

o language understanding capabilities

o model of mental state.

o variables modeling levels of Anger, Fear, Mistrust

PARRY: A computational model of schizophrenia
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Fear  (0-20)                    Anger (0-20)                  Mistrust  (0-15)

Start with all variables low

After each user turn

o Each user statement can change Fear and Anger

oE.g., Insults increases Anger, Flattery decreases Anger

oMentions of his delusions increase Fear

o Else if nothing malevolent in input

o Anger, Fear, Mistrust all drop

Affect variables
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Parry's responses depend on mental state

44

Modify
Affect variables

excessive 
fear

Escape

excessive 
anger

Hostility

Input 
mentions 
delusion 

topic

question

Fear answer

User Input

condition

response

…
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• The first system to pass a version of the Turing test 

• Psychiatrists couldn’t distinguish interviews with PARRY from (text 

transcripts of) interviews with people diagnosed with paranoid 

schizophrenia

o Colby, K. M., Hilf, F. D., Weber, S., and Kraemer, H. C. (1972). Turing-like 

indistinguishability tests for the validation of a computer simulation of paranoid 

processes. Artificial Intelligence 3, 199–221. 

PARRY passes the Turing test in 1972
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Week 10. 4 - Corpus-based Chatbots

SIT330-770: Natural 
Language Processing
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• Response by retrieval

oUse information retrieval to grab a response (that is appropriate 

to the context) from some corpus

• Response by generation

oUse a language model or encoder-decoder to generate the 

response given the dialogue context

Two architectures for corpus-based chabots

47
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• Modern corpus-based chatbots are very data-intensive

• They commonly require hundreds of millions or billions of words

Corpus-based chatbots require corpora

48
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• Transcripts of telephone conversations between volunteers

o Switchboard corpus of American English telephone conversations

• Movie dialogue

o Various corpora of movie subtitles

• Hire human crowdworkers to have conversations

o Topical-Chat 11K crowdsourced conversations on 8 topics

o EMPATHETICDIALOGUES 25K crowdsourced conversations grounded in a situation where a speaker was feeling a 

specific emotion

• Pseudo-conversations from public posts on social media

o Drawn from Twitter, Reddit, Weibo (微博), etc. 

o Tend to be noisy; often used just as pre-training.

• Crucial to remove personally identifiable information (PII) 

What conversations to draw on?

49
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1. Given a user turn q, and a training corpus C of conversation

2. Find in C the turn r that is most similar (tf-idf cosine) to q

3. Say r

Response by retrieval: classic IR method

50
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1. Given a user turn q, and a training corpus C of conversation

2. Find in C the turn r that is most similar (BERT dot product) to q

3. Say r

Response by retrieval: neural IR method
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• Think of response production as an encoder-decoder task

• Generate each token rt of the response by conditioning on the encoding of 

the entire query q and the response so far r1...rt−1 

Response by generation
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Response by generation

53
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• Alternative approach: fine-tune a large language model  on conversational 

data

• The Chirpy Cardinal system (Paranjape et al., 2020):

o fine-tunes GPT-2 

o on the EmpatheticDialogues dataset (Rashkin et al., 2019) 

Response by generation
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“What ho!” I said.

“What ho!” said Motty.

“What ho! What ho!”

“What ho! What ho! What ho!”

After that it seemed rather difficult to go on with the conversation.” 

   Wodehouse My Man Jeeves, 1919 

P.G. Wodehouse predicts neural chatbots
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A: Where are you going?

B: I’m going to the restroom.

A: See you later.

B: See you later.

A: See you later.

B: See you later.

Ongoing research problem:
Neural chatbots can get repetitive and boring

56

A: How old are you?

B: I’m 16.

A: 16?

B: I don’t know what you are talking about.

A: You don’t know what you are saying.

B: I don’t know what you are talking about.

A: You don’t know what you are saying.
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• Can generate responses from informative text rather than dialogue

•  To respond to turns like “Tell me something about Beijing”

o XiaoIce collects sentences from public lectures and news articles.

o And searches them using IR based on query expansion from user’s turn

• Can augment encoder-decoder model

o use IR to retrieve passages from Wikipedia 

o concatenate each Wikipedia sentence to the dialogue context with a separator token. 

o Give as encoder context to the encoder-decoder model, which learns to incorporate text into 

its response

Response by retrieving and refining knowledge 
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• Chirpy Cardinal (Paranjape et al., 2020) response generation from a series of 

different generators:

• GPT-2 finetuned on EmpatheticDialogues

• GPT-2 finetuned to paraphrase content from Wikipedia

• Rule-based movie or music generators that produce scripted conversation about a 

movie or a musician

o asking the user’s opinion about a movie, 

o giving a fun fact, 

o asking the user their opinion on an actor in the movie.

Hybrid Architectures
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Chirpy 
Cardinal 
(Paranjape 
et al. 2020)
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• Pro:

o Fun

o Good for narrow, scriptable applications

• Cons:

o They don't really understand

o Giving the appearance of understanding may be problematic

o Rule-based chatbots are expensive and brittle

o IR-based chatbots can only mirror training data

o We'll discuss later the case of Microsoft Tay

• (or, Garbage-in, Garbage-out)

• Next steps: integrating chatbot ability into frame-based agents

Chatbots: pro and con
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Week 10. 5 - The Frame-based ("GUS") 
Dialogue Architecture

SIT330-770: Natural 
Language Processing
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• Sometimes called "task-based dialogue agents”

o Systems that have the goal of helping a user solve a task like making a travel 

reservation or buying a product

• Architecture: 

o First proposed in the GUS system of 1977

oA knowledge structure representing user intentions

oOne or more frames (each consisting of slots with values)

Frame-based dialogue agents
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• A set of slots, to be filled with information of a given type

• Each associated with a question to the user

• Sometimes called a domain ontology

Slot  Type Question

ORIGIN city  "What city are you leaving from?

DEST   city  "Where are you going?

DEP DATE date "What day would you like to leave?

DEP TIME time "What time would you like to leave?

AIRLINE line  "What is your preferred airline?

The Frame

63
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• The GUS architecture

o Sometimes just called "frame-based" architecture

o Over 40 years old, but still used in most industrial task-based dialogue agents

o Bobrow, Daniel G., Ronald M. Kaplan, Martin Kay, Donald A. Norman, Henry Thompson, and Terry 

Winograd. 1977. "GUS, a frame-driven dialog system." Artificial Intelligence 8, 2:155-173.

• The dialogue-state architecture

o Extension of GUS

o More common in research systems

o Some aspects making their way into industrial systems

Two basic architectures
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• System asks questions of user, filling any slots that user specifies

• User might fill many slots at a time:

o I want a flight from San Francisco to Denver one way leaving after five p.m. on Tuesday. 

• When frame is filled, do database query

Control structure for GUS frame architecture
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• Some rules attached to the DESTINATION slot for the plane 

booking frame

1.  Once the user has specified the destination

o Enter that city as the default StayLocation for the hotel booking frame. 

2.  Once the user has specified DESTINATION DAY for a short trip 

o Automatically copy as ARRIVAL DAY. 

GUS slots have condition-action rules attached
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• Frames like:

o Car or hotel reservations

o General route information

o Which airlines fly from Boston to San Francisco?, 

o Information about airfare practices 

o Do I have to stay a specific number of days to get a decent airfare?). 

• Frame detection:

o System must detect which slot of which frame user is filling

o And switch dialogue control to that frame. 

GUS systems have multiple frames

68
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1. Domain classification

Asking weather? Booking a flight? Programming alarm clock?

2. Intent Determination

Find a Movie, Show Flight, Remove Calendar Appt

3. Slot Filling

Extract the actual slots and fillers

GUS: Natural Language Understanding for filling dialog slots

69
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• Show me morning flights from Boston to SF on 

Tuesday.

Natural Language Understanding for filling slots
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• Wake me tomorrow at six.

Natural Language Understanding for filling slots

71



Deakin University CRICOS Provider Code: 00113B

• Write regular expressions or grammar rules

• Wake me (up) | set (the|an) alarm | get me up

• Do text normalization

How to fill slots?
(1) Rule-based Slot-filling

72
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• A template is a pre-built response string

• Templates can be fixed:

"Hello, how can I help you?"

• Or have variables:

"What time do you want to leave CITY-ORIG?"

"Will you return to CITY-ORIG from CITY-DEST?"

Generating responses: template-based generation
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• Like many rule-based approaches

o Positives:

o High precision

o Can provide coverage if the domain is narrow

o Negatives:

o Can be expensive and slow to create rules

o Can suffer from recall problems

Summary: simple frame-based architecture
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Week 10. 6 - The Dialogue-State 
Architecture

SIT330-770: Natural 
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• A more sophisticated version of the frame-based architecture

o Has dialogue acts, more ML, better generation

• The basis for modern research systems

• Slowly making its way into industrial systems

o Some aspects (ML for slot-understanding) already widely used industrially

Dialogue-State or Belief-State Architecture
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The Dialogue-State Architecture

Williams, Jason D., Antoine Raux, and Matthew Henderson. "The dialog state 

tracking challenge series: A review." Dialogue & Discourse 7, no. 3 (2016): 4-33.
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• NLU: extracts slot fillers from the user’s utterance using machine learning

• Dialogue state tracker: maintains the current state of the dialogue (user’s most 

recent dialogue act, set of slot-filler constraints from user

• Dialogue policy: decides what the system should do or say next

• GUS policy: ask questions until the frame was full then report back

• More sophisticated: know when to answer questions, when to ask a clarification 

question, etc.

• NLG: produce more natural, less templated utterances

Components in a dialogue-state architecture
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• Combine the ideas of speech acts and grounding into a single 

representation

Dialogue Acts

79

Young et al., 2010:
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Dialogue Acts

80

Young et al., 2010:
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• Machine learning classifiers to map words to semantic frame-fillers

• Given a set of labeled sentences

Input: "I want to fly to San Francisco on Monday please"

Output: Destination: SF

  Depart-time: Monday

• Build a classifier to map from one to the other

• Requirements: Lots of labeled data

Slot filling: Machine learning
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• The BIO tagging paradigm

• Idea: Train a classifier to label each input word with a tag that tells us what 

slot (if any) it fills

• We create a B and I tag for each slot-type

• And convert the training data to this format

Slot filling as sequence labeling: BIO tagging
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Slot filling using contextual embeddings

83

20 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

Fig. 24.15 shows the architecture. The input is a series of wordsw1...wn, which

is passed through a contextual embedding model to get contextual word representa-

tions. This is followed by a feedforward layer and a softmax at each token position

over possible BIO tags, with the output a series of BIO tags s1...sn. We can also

combine the domain-classification and intent-extraction tasks with slot-filling sim-

ply by adding a domain concatenated with an intent as the desired output for the

final EOS token.

San Francisco on Monday

Encodings

Classifier

+softmax

B-DES I-DES O B-DTIME

…

d+i

<EOS>

Encoder (BERT)

Figure24.15 A simple architecture for slot filling, mapping the words in the input through

contextual embeddings like BERT to an output classifier layer (which can be linear or some-

thing more complex), followed by softmax to generate a series of BIO tags (and including a

final stateconsisting of adomain concatenated with an intent).

Once the sequence labeler has tagged the user utterance, a filler string can be

extracted for each slot from the tags (e.g., “San Francisco”), and these word strings

can then benormalized to the correct form in the ontology (perhaps the airport code

‘SFO’). This normalization can takeplace by using homonym dictionaries (specify-

ing, for example, that SF, SFO, and San Francisco are the same place).

In industrial contexts, machine learning-based systems for slot-filling are of-

ten bootstrapped from GUS-style rule-based systems in a semi-supervised learning

manner. A rule-based system is first built for the domain, and a test set is carefully

labeled. As new user utterances come in, they are paired with the labeling provided

by the rule-based system to create training tuples. A classifier can then be trained

on these tuples, using the test set to test the performance of the classifier against

the rule-based system. Some heuristics can be used to eliminate errorful training

tuples, with the goal of increasing precision. As sufficient training samples become

available the resulting classifier can often outperform theoriginal rule-based system

(Suendermann et al., 2009), although rule-based systems may still remain higher-

precision for dealing with complex cases like negation.

24.4.3 Dialogue State Tracking

The job of the dialogue-state tracker is to determine both the current state of the

frame (the fillers of each slot), as well as the user’s most recent dialogue act. The

dialogue-state thus includes more than just the slot-fillers expressed in the current

sentence; it includes the entire state of the frame at this point, summarizing all of

the user’s constraints. The following example from Mrkšić et al. (2017) shows the

required output of the dialogue state tracker after each turn:

Can do domain and intent too: e.g.,  generate the label  
"AIRLINE_TRAVEL + SEARCH_FLIGHT"
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• We can extract the filler string for each slot

• And then normalize it to the correct form in the ontology

• Like "SFO" for San Francisco

• Using homonym dictionaries (SF=SFO=San Francisco)

Once we have the BIO tag of the sentence

84
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The task of dialogue state tracking

85

Example from Mrkšić, N., O Séaghdha, D., Wen, T.-H., Thomson, B., and 
Young, S. (2017). Neural belief tracker: Data-driven dialogue state tracking. ACL. 
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• I'd like Cantonese food near the Mission district.

→

inform(food=cantonese, area=mission). 

• Dialogue act interpretation algorithm: 

o 1-of-N supervised classification to choose inform

o Based on encodings of current sentence + prior dialogue acts

• Simple dialogue state tracker:

o Run a slot-filler after each sentence 

Dialogue state tracking

86
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• If system misrecognizes an utterance

• User might make a correction

o Repeat themselves

o Rephrasing

o Saying “no” to a confirmation question

An special case of dialogue act detection: 
Detecting Correction Acts

87
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• From speech, corrections are misrecognized twice as often (in terms of word error rate) 

as non-corrections! (Swerts et al 2000)

• Hyperarticulation (exaggerated prosody) is a large factor: 

o Shriberg, E., Wade, E., Price, P., 1992. Human-machine problem solving using spoken language systems 

(SLS): Factors affect-ng performance and user satisfaction. DARPA Speech and Natural Language 

Workshop.

• "I said BAL-TI-MORE, not Boston"

Corrections are harder to recognize!
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Features for detecting corrections in spoken dialogue

89
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Week 10. 7 - The Dialogue-State 
Architecture Continued: Policy and 
Generation

SIT330-770: Natural 
Language Processing
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• At turn i predict action Ai to take, given entire history:

• Simplify by just conditioning on the current dialogue state (filled frame slots) 

and the last turn and turn by system and user:

Dialogue Policy

91
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• Dialogue systems make errors

• So they to make sure they have understood user

• Two important mechanisms:

o confirming understandings with the user 

o rejecting utterances that the system is likely to have misunderstood. 

Policy example: Confirmation and Rejection

92
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Explicit confirmation strategy

93
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Implicit confirmation strategy

94
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• Explicit confirmation makes it easier for users to correct the system’s 

misrecognitions since a user can just answer “no” to the confirmation 

question. 

• But explicit confirmation is also awkward and increases the length of the 

conversation (Danieli and Gerbino 1995, Walker et al. 1998). 

Confirmation strategy  tradeoffs

95
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I’m sorry, I didn’t understand that. 

96

Rejection
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• Don't just repeat the question "When would you like to leave?"

• Give user guidance about what they can say:

Progressive prompting for rejection

97
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• ASR  or NLU systems can assign a confidence value, indicating how likely they are that 

they understood the user. 

o Acoustic log-likelihood of the utterance

o Prosodic features

o Ratio of score  of best to second-best interpretation

• Systems could use set confidence thresholds:

Using confidence to decide whether to confirm:

98
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• NLG  in information-state architecture modeled in two stages:

o content planning (what to say)

o sentence realization (how to say it). 

• We'll focus on sentence realization here.

Natural Language Generation

99
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• Assume content planning has been done by the dialogue policy

o Chosen the dialogue act to generate 

o Chosen some attributes (slots and values) that the planner wants to say to the user 

o Either to give the user the answer, or as part of a confirmation strategy) 

Sentence Realization

100
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2 samples of Input and Output for Sentence Realizer

101
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• Training data is hard to come by 

o Don't see each restaurant in each situation

• Common way to improve generalization:

o Delexicalization: replacing words in the training set that represent slot values with a 

generic placeholder token:

102
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• Training data is hard to come by 

o Don't see each restaurant in each situation

• Common way to improve generalization:

o Delexicalization: replacing words in the training set that represent slot values with a 

generic placeholder token:

Sentence Realization

103
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• Encoder-decoder models:

• Output:

      restaurant_name has decent service

• Relexicalize to: 

        Au Midi has decent service 

Sentence Realization: mapping from frames to delexicalized 
sentences

104
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• User: What do you have going to UNKNOWN WORD on the 5th? 

• System: Going where on the 5th? 

• The system repeats “going” and “on the 5th” to make it clear which aspect of the 

user’s turn the system needs to be clarified

• Methods for generating clarification questions:

o Rules like 'replace “going to UNKNOWN WORD” with “going where”'

o Classifiers that  guess which slots were misrecognized 

Generating clarification questions
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Week 10. 8 - Evaluating Dialogue 
Systems

SIT330-770: Natural 
Language Processing
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• Task-based dialogue:  

o mainly by measuring task performance

• Chatbots: 

o mainly by human evaluation

Evaluating chatbots and task-based dialogue

107
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• Participant evaluation: The human who talked to the chatbot assigns a 

score

• Observer evaluation: third party who reads a transcript of a human/chatbot 

conversation assigns a score.

Chatbots are evaluated by humans

108
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• Human chats with model for 6 turns and rates 8 dimensions of quality:

• avoiding repetition, interestingness, making sense, fluency, listening, inquisitiveness, 

humanness, engagingness, 

• (1) Avoiding Repetition: How repetitive was this user? 

o •Repeated themselves over and over •Sometimes said the same thing twice • Always said something new 

• (3) Making sense: How often did this user say something which didn't make sense? 

o •Never made any sense •Most responses didn’t make sense •Some responses didn’t make sense •Everything 

made perfect sense 

• (8) Engagingness:  How much did you enjoy talking to this user?

o  •Not at all •A little •Somewhat •A lot

Participant evaluation

109

Abigail See, Stephen Roller, Douwe Kiela, Jason Weston. 2019.  What makes a good conversation? How controllable attributes affect human judgments. NAACL.
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• Annotators look at two conversations (A + B) and decide which is better:

• Engagingness: Who would you prefer to talk to for a long conversation? 

• Interestingness: If you had to say one of these speakers is interesting and 

one is boring, who would you say is more interesting? 

• Humanness: Which speaker sounds more human? 

• Knowledgeable: If you had to say that one speaker is more knowledgeable 

and one is more ignorant, who is more knowledgeable? 

Observer evaluation: acute-eval

110

Li, M., Weston, J., and Roller, S. (2019). Acute-eval: Improved dialogue evaluation with optimized 
questions and multi-turn comparisons. NeurIPS19 Workshop on Conversational AI. 
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The ACUTE-EVAL method
Li et el., 2019

111
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• Automatic evaluation methods (like the BLEU scores used for Machine Translation) 

are generally not used for chatbots. 

o They correlate poorly with human judgements.

• One current research direction: Adversarial Evaluation

o Inspired by the Turing Test

o train a ``Turing-like'' classifier to distinguish between human responses and machine 

responses.

o The more successful a dialogue system is at fooling the evaluator, the better the system.

Automatic evaluation is an open problem
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1. End-to-end evaluation (Task Success)

2. Slot Error Rate for a Sentence

 # of inserted/deleted/subsituted slots

            # of total reference slots for sentence

Task-based systems are evaluated by task success!
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• “Make an appointment with Chris at 10:30 in Gates 104”

Evaluation Metrics: Slot error rate

114

Slot error rate: 1/3
Task success: At end, was the correct meeting added to the calendar?

Slot Filler

PERSON Chris

TIME 11:30 a.m.

ROOM Gates 104
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More fine-grained metrics: User Satisfaction Survey

115

Walker, Marilyn, Candace Kamm, and Diane Litman. "Towards developing general 
models of usability with PARADISE." Natural Language Engineering 6, no. 3 & 4 
(2000): 363-377.
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• Efficiency cost: 

o total elapsed time for the dialogue in seconds, 

o the number of total turns or of system turns

o total number of queries 

o “turn correction ratio”: % of turns that were used to correct errors

• Quality cost: 

o number of ASR rejection prompts. 

o number of times the user had to barge in

Other Heuristics
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1. Study the users and task

• value-sensitive design

2. Build simulations

•  Wizard of Oz study

3. Iteratively test design on users

Dialog System Design: User-centered Design

118

Gould, John D., and Clayton Lewis. "Designing for usability: key principles and what 
designers think." Communications of the ACM 28, no. 3 (1985): 300-311.

Bender, Emily M., and Batya Friedman. "Data statements for natural language processing: 
Toward mitigating system bias and enabling better science." TACL 6 (2018): 587-604.
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• Ethical issues have long been known to be crucial in artificial 

agents

• Mary Shelley's Frankenstein

o creating agents without a consideration of ethical and humanistic 

concerns 

• Ethical issues:

o Safety:  Systems abusing users, distracting drivers, or giving bad 

medical advice

o Representational harm: Systems demeaning particular social groups

o Privacy: Information Leakage 

Ethical design

119
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• Chatbots for mental health

o Extremely important not to say the wrong thing

• In-vehicle conversational agents

o Must be aware of environment, driver's level of attention

Safety

120

Peter Henderson, Koustuv Sinha, Nicolas Angelard-Gontier, Nan Rosemary Ke, Genevieve Fried, Ryan Lowe, and 
Joelle Pineau. 2018. Ethical Challenges in Data-Driven Dialogue Systems. In 2018 AAAI/ACM Conference on AI, 
Ethics, and Society (AIES ’18), 
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• Experimental Twitter chatbot launched in 2016

ogiven the profile personality of an 18- to 24-year-old American 

woman

ocould share horoscopes, tell jokes, 

oasked people to send selfies

oused informal language, slang, emojis, and GIFs, 

oDesigned to learn from users (IR-based) 

Abuse and Representation Harm: The case of Microsoft Tay
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• Immediately Tay turned offensive and abusive

oObscene and inflammatory tweets

oNazi propaganda, conspiracy theories

oBegan harassing women online

oReflecting racism and misogyny of Twitter users

• Microsoft took Tay down after 16 hours

• Lessons:

oUser response must be considered in the design phase

The case of Microsoft Tay

122
Gina Neff and Peter Nagy 2016. Talking to Bots: Symbiotic Agency and the Case of Tay. International Journal of 
Communication 10(2016), 4915–4931 
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• Henderson et al. ran hate-speech and bias detectors on 

standard training sets for dialogue systems:

oTwitter, Reddit, other dialogue datasets

• Found bias and hate-speech

oIn training data

oIn dialogue models trained on the data

Bias in training datasets

123

Peter Henderson, Koustuv Sinha, Nicolas Angelard-Gontier, Nan Rosemary Ke, Genevieve Fried, Ryan Lowe, and Joelle 
Pineau. 2018. Ethical Challenges in Data-Driven Dialogue Systems. In 2018 AAAI/ACM Conference on AI, Ethics, and Society 
(AIES ’18), 
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• Accidental information leakage

o “Computer, turn on the lights [answers the phone] Hi, yes, my password is...”

o Henderson show in simulation that this leakage can occur.

• Intentional information leakage

o Dialogue systems that are designed to send user data to developer or advertisers

o Important to consider privacy-preserving dialogue systems

Privacy: Training on user data

124

Peter Henderson, Koustuv Sinha, Nicolas Angelard-Gontier, Nan Rosemary Ke, Genevieve Fried, Ryan Lowe, and Joelle Pineau. 2018. 
Ethical Challenges in Data-Driven Dialogue Systems. In 2018 AAAI/ACM Conference on AI, Ethics, and Society (AIES ’18), 

Campagna, Giovanni, Rakesh Ramesh, Silei Xu, Michael Fischer, and Monica S. Lam. "Almond: The architecture of an open, 
crowdsourced, privacy-preserving, programmable virtual assistant." In Proceedings of the 26th International Conference on World Wide 
Web, pp. 341-350. 2017.
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